Math 4300
Homework 1
Solutions
(1) $(a) P=(-1,2), Q=(3,2)$

They don't lie on a vertical line, so plug them into $y=m x+b$ to get:

$$
\begin{aligned}
& 2=m(-1)+b \\
& 2=m(3)+b
\end{aligned}
$$

or

$$
\begin{array}{r}
-m+b=2 \\
3 m+b=2 \tag{2}
\end{array}
$$

(1) - (2) gives $-4 m=0$ or $m=0$.

Thus, $b=2$.
Thus, P, Q lie on $L_{m, b}=L_{0,2}$.

(1)(b) $P=(-4,-\sqrt{2}), Q=(-4,2)$ have the same x-coordinate and thus lie on the vertical line L_{-4}.

(1)(c) $P=(2,1), Q=(4,3)$

They don't lie un a vertical line so they must lie on $y=m x+b$ for some m, b. plug them into $y=m x+b$ to get:

$$
\begin{align*}
& 1=m(2)+b \tag{1}\\
& 3=m(4)+b \tag{2}
\end{align*}
$$

(1) -(2) gives $-2=-2 m$. So, $m=1$.

Thus, $b=1-2 m=1-2=-1$.
Therefore,
P, Q lie on $L_{m, b}=L_{1,-1}$

(2) $(a) \quad P=(1,2), Q=(3,4)$
P, Q don't lie un a vertical line so they must lie on some L_{r}.
Plugging them into $(x-c)^{2}+y^{2}=r^{2}$ gives:

$$
\begin{aligned}
& (1-c)^{2}+2^{2}=r^{2} \\
& (3-c)^{2}+4^{2}=r^{2}
\end{aligned}
$$

which becomes

$$
\begin{align*}
& c^{2}-2 c+5=r^{2} \tag{1}\\
& c^{2}-6 c+25=r^{2} \tag{2}
\end{align*}
$$

(1) - (2) gives $4 c-20=0$.

So, $c=5$.
Then, (1) gives $r^{2}=5^{2}-2(5)+5=20$.
So, $r=\sqrt{20} \approx 4.47$.
Thus, $P=(1,2)$ and $Q=(3,4)$ lie on $L_{\sqrt{20}}$. Picture 7

(2)(b) $P=(\pi, \sqrt{2}), Q=(\pi, 2)$ lie on the vertical line π^{L}.

(2)(c) $P=(2,1), Q=(4,3)$

These points don't lie on a vertical line. So, they must lie un $c L_{r}$ for some c, r.
plug P, Q into $(x-c)^{2}+y^{2}=r^{2}$ to get:

$$
\begin{aligned}
& (2-c)^{2}+1^{2}=r^{2} \\
& (4-c)^{2}+3^{2}=r^{2}
\end{aligned}
$$

This gives

$$
\begin{align*}
& c^{2}-4 c+5=r^{2} \tag{1}\\
& c^{2}-8 c+25=r^{2} \tag{2}
\end{align*}
$$

(1) -(2) gives $4 c-20=0$.

So, $c=5$.
(1) then gives $r^{2}=5^{2}-4(5)+5=10$.

So, $r=\sqrt{10} \approx 3.16$

(3) $(a) P=(3,2), Q=(3,1), R=(1,-1)$.

Suppose P, Q, R were collinear.
Then they would all lie on the same unique line l. (lance a line through Since P and Q both lie on L_{3}
this would imply that $l=L_{3}$.
But $R=(1,-1)$ does not satisfy $x=3$.
So, there is no unique line that P, Q, R all lie on.
Thus, P, Q, R are noncollinear.
(3) (b) Let $P=(2,1), Q=(4,3), R=(6,5)$

Are these points collinear?
Suppose they all lie on some line l.
l can't be vertical since P, Q, R have different x-components.
So l must be of the form $y=m x+b$.
Plugging $P=(2,1)$ and $Q=(4,3)$ into

$$
\begin{align*}
& \quad \begin{array}{l}
=m x+b \\
1=m(2)+b \\
3=m(4)+b
\end{array} \Rightarrow \begin{array}{l}
2 m+b=1 \\
4 m+b=3
\end{array} \tag{1}
\end{align*}
$$

Doing (1) - (2) gives $-2=-2 m$.

Thus, $m=1$.
And by (1) $b=1-2 m=1-2=-1$.
So, P and Q both lie on $L_{m, b}=L_{1,-1}$
Since the line through P

$$
y=x-1
$$ and Q is unique we have $l=L_{1,-1}$.

Does $R=(6,5)$ lie on this line also?
We have $\underbrace{5=6-1}$.

$$
\begin{aligned}
& y=x-1 \\
& \text { with } \\
& x=6 \\
& y=5
\end{aligned}
$$

So, R also lies on $L_{1,-1}$.
Thus, P, Q, R are collinear.
$(3(c) \quad P=(0,1), Q=(0,3), R=(0,-5), S=(0,10)$ are collinear since they all lie on $x=0$, ie L_{0}.

(4) (a)

$$
\begin{aligned}
& A=(-2,2), \quad B=(-2,4), \\
& C=(-2,300), \text { all }
\end{aligned}
$$

lie on -2 .
(4) $(b) P=(0,1), Q=(1,2), R=(4,1)$

Are these points collinear?
Suppose they ane.
Then they lie on a unique line l.
Since they have different x coordinates the they is not vertical, and is of the form $l=L_{L_{r}} \quad(x-c)^{2}+y^{2}=r^{2}$
Plugging P and Q into $(x-c)^{2}+y^{2}=r^{2}$ and solving gives

$$
\begin{aligned}
& (0-c)^{2}+1^{2}=r^{2} \\
& (1-c)^{2}+2^{2}=r^{2}
\end{aligned}
$$

$$
\begin{array}{r}
c^{2}+1=r^{2} \tag{1}\\
c^{2}-2 c+5=r^{2}
\end{array}
$$

$$
\begin{equation*}
(x-2)^{2}+y^{2}=5 \tag{2}
\end{equation*}
$$

(1) - (2) gives $2 c-4=0$. So, $c=2$.

Then, $r^{2}=c^{2}+1=2^{2}+1=5$
So, $r=\sqrt{5} \approx 2.236$
Thus, $P=(0,1)$, and $Q=(1,2)$ lie on $L_{\sqrt{5}}$ Does $R=(4,1)$ lie un $2 L_{\sqrt{s}}$?
If $x=4, y=1$, then $(x-2)^{2}+y^{2}=(4-2)^{2}+1^{2}=5$
So, yes R does.
Thus, P, Q, R are all collinear.

(4) (c) $\quad A=(1,1), B=(3,1), C=(2,3)$

Are these points collinear?
suppose they are.
Then they all lie un some unique line l.
Since they have different x-coordinates they must all lie on $l=L_{c} L_{r}$ for
Some c, r.
plugging $A=(1,1), B=(3,1)$ into $(x-c)^{2}+y^{2}=r^{2}$ \checkmark gives

$$
\begin{array}{r}
(1-c)^{2}+1^{2}=r^{2} \\
(3-c)^{2}+1^{2}=r^{2} \\
d \\
c^{2}-2 c+2=r^{2} \tag{2}\\
c^{2}-6 c+10=r^{2}
\end{array}
$$

(1) - (2) gives $4 c-8=0$.

So, $c=2$.
Then, (1) gives $r^{2}=2^{2}-2(2)+2=2$.
So, $r=\sqrt{2} \approx 1.414$

Thus, $A=(1,1), B=(3,1)$ lie on $L_{r}=L_{2}$.
Does $C=(2,3)$ also lie
Plugging $x=2, y=3$ in we get $\begin{gathered}(x-2)^{2}+y^{2}=4 \\ y>0\end{gathered}$

$$
\begin{aligned}
& \text { aging } x=2, y=3 \\
& (x-2)^{2}+y^{2}=(2-2)^{2}+3^{2}=9 \neq 4 \\
& \text { lie on } L_{2}
\end{aligned}
$$

So, C does not lie on L_{2}.
Thus, there is no unique line that passes through A, B, C and these points are noncollincar.

(5) (a) $L_{1}=L_{\text {, }}$ so they are parallel
(5)(b) $L_{-3} \neq L_{1}$ and $L_{-3} \cap L_{1}=\phi$.

So, L_{-3} and L_{1} are parallel.

(5)(c) $L_{-3} \neq L_{1,1}$

Do they intersect?
Plug $x=-3$ into $y=x+1$
to get $y=-3+1=-2$.
So, $L_{-3} \cap L_{1,1}=\{(-3,-2)\} \neq \phi$
Thus, L_{-3} and $L_{1,1}$ are not parallel.
(5) (d) $L_{-1,2} \neq L_{1,1}$

Do they intersect.
Take $y=-x+2$ and
plug it into $y=x+1$
to get $-x+2=x+1$
Then, $x=1 / 3$.
Plug this into $y=-x+2$

to get $y=-1 / 3+2$

$$
=5 / 3 .
$$

Thus, $L_{-1,2} \cap L_{1,1}=\left\{\left(\frac{1}{3}, \frac{5}{3}\right)\right\} \neq \phi$
and so the lines are not parallel.
(5)(e) $L_{3,2} \neq L_{3,-1}$

Plugging $y=3 x+2$ into

$$
\begin{aligned}
& y=3 x-1 \text { gives } \\
& 3 x+2=3 x-1
\end{aligned}
$$

This gives $z=-1$
which cunt be solved.
So, $L_{3,2} \cap L_{3,-1}=\phi$.

Thus, $L_{3,2}$ and $L_{3,-1}$ are parallel.
(6)(a) $\quad L_{1} \neq{ }_{5} L_{2}$

Do they intersect?
We have two equations:

$$
\begin{aligned}
& (x-0)^{2}+y^{2}=1 \\
& (x-5)^{2}+y^{2}=2
\end{aligned} \leftarrow L_{1} L_{2}
$$

$$
\begin{aligned}
& x^{2}+y^{2}=1 \\
& x^{2}-10 x+25+y^{2}=2
\end{aligned}
$$

(1) $\left.\leftarrow-{ }^{-1}+\square+1-\phi\right\rangle$
(1) -(2) gives $10 x-25=-1$.

That gives $10 x=24$.
That gives $x=\frac{24}{10}=\frac{12}{5}$.
Plug $x=\frac{12}{5}$ into (1) to get

$$
y^{2}=1-x^{2}=1-\frac{12^{2}}{5^{2}}=-\frac{119}{25}
$$

But there is $n_{0} y$ with

$$
y^{2}=-\frac{119}{25} .
$$

Thus, ${ }_{0} L_{1} \cap{ }_{5} L_{2}=\phi$.
So, L_{1} and ${ }_{5} L_{2}$ are palled.
(6) (b)

$$
{ }_{0} L_{1} \neq{ }_{2} L_{2}
$$

De they intersect?
We have

$$
\begin{align*}
& \text { We have } \\
& \begin{array}{l}
(x-0)^{2}+y^{2}=1^{2} \\
(x-2)^{2}+y^{2}=2^{2}
\end{array} \leftarrow 0_{0}^{L_{1}} \\
& \begin{array}{l}
x_{2}^{2}+y^{2}=1 \\
x^{2}-4 x+4+y^{2}=4
\end{array} \tag{1}
\end{align*}
$$

(1) - (2) gives $4 x-4=-3$. So, $x=\frac{1}{4}$.

Plug $x=\frac{1}{4}$ into (1) to get $y^{2}=1-\frac{1}{16}=\frac{15}{16}$.
Similarly $x=\frac{1}{4}$ in (1) gives $y^{2}=2^{2}-\left(\frac{1}{4}-2\right)^{2}$
So, $y=\sqrt{15 / 16}$.
So, $L_{1} \cap_{2} L_{2}=\{(1 / 4,15 / 16)\} \neq \phi=4-15 / 16$
Thus, L_{1} and $L_{2} L_{2}$ are not parallel.
(6) (c) $L_{0} \neq{ }_{5} L_{2}$

Do they intersect?

$$
\begin{gathered}
(x-5)^{2}+y^{2}=2^{2} \\
y>0
\end{gathered}
$$

$$
y>0
$$

We have the equations

$$
\begin{gather*}
\frac{(x-0)^{2}+y^{2}=10^{2}}{(x-5)^{2}+y^{2}=2^{2}}
\end{gather*} \leftarrow{ }_{0}^{L_{10}}
$$

Then (1)-(2) gives

$$
\begin{gathered}
10 x-25=96 \\
10 x=121 \\
x=\frac{121}{10}
\end{gathered}
$$

$\begin{aligned} \text { Plug } x=\frac{121}{10} \text { into (1) to get } y^{2}=100-x^{2} & =100-\frac{14641}{100} \\ & =-4641\end{aligned}$
But there is no y with $y^{2}=\frac{-4641}{10}$.
So, ${ }_{0} L_{10} \cap L_{s}=\phi$.
Thus, L_{10} and L_{2} are parallel.
(6) (d)

$$
L_{10}=L_{10}
$$

So, L_{10} and L_{10}
are parallel.

(6) (e),$L_{10} \neq-{ }_{-5}$

Do they intersect?
We have these equations:

$$
\begin{gathered}
(x-1)^{2}+y^{2}=10^{2} \\
x=-5
\end{gathered}
$$

Thus,,$L_{10} \cap{ }_{-5} L=\{(-5,8)\} \neq \phi$
So, L_{10} and L_{-S} ane not paralell.
(6) $(f), L_{1} \neq L_{2} L_{2}$

Do they inturect?
we have

$$
\begin{align*}
& \begin{array}{l}
\begin{array}{l}
(x-1)^{2}+y^{2}=1^{2} \\
(x-2)^{2}+y^{2}=2^{2}
\end{array} \\
<{ }_{2}^{L} \\
L_{2} \\
x^{2}-2 x+1+y^{2}=1 \\
x^{2}-4 x+4+y^{2}=4
\end{array}
\end{align*}
$$

(1) - (2) gives $2 x-3=-3$.
$(0,0)$ is not in the hyperbolic plane
So, $x=0$.
Plug $x=0$ into (1) to get $y^{2}=0$, and so $y=0$.
Plug $x=0$ into (2) to get
$y^{2}=0$ and so $y=0$.
However, ever though $(x, y)=(0,0)$ satisfies
(1) and (2) we have $(0,0)$ is not in the hyperbolic plane since its y-coordinate isn't positive. So, $L_{1}, \cap_{2} L_{2}=\phi$ and these lines are poralell.
(7) Let $(\mathscr{P}, \mathcal{L})$ be an incidence geometry. Let P, Q, R be distinct points from \mathcal{P} that are collinear.
Then there exists a line ℓ from \mathcal{L} where P, Q, and R all lie on l.
We must show l is unique.
Since $(\mathscr{P}, \mathcal{L})$ is an incidence geometry there is a unique line through any two distinct points.
That is the only line through P and Q is $\stackrel{\rightharpoonup}{P Q}$.
Thus, $l=\overleftrightarrow{P Q}$ and it is unique.
(8) Let (∂, \mathcal{L}) be an incidence geometry. Let $l \in \mathcal{L}$ be a line.
We must show there exists a point $P \in D$ that does not lie on l. Suppose otherwise.
Then every point $P \in \partial$ lies on l.
But then all the points of ∂^{∂} would be collinear.
However, $\left(\partial^{2}, \mathcal{L}\right)$ is un incidence plane and thus by definition there must exist three points that are non collinear.
Contradiction.
Thus, there must exist a point P where P is not on l.
(9) (Method 1-proof by contradiction)

Suppose othemire.
That is, suppose P lies on every line in \mathcal{L}.
Since $(\mathscr{D}, \mathcal{Z})$ is an incidence geometry there exists distinct points A, B, C that are non-collinear.
case 1: Suppose $P \in\{A, B, C\}$.
Without loss of generality, assume $P=A$.
By assumption, $P \in \overleftrightarrow{B C}$
But then $A=P \in \stackrel{\leftrightarrow}{B C}$.
Then, $A, B, C \in \overleftrightarrow{B C}$ contradizing $p=A$ that they are collinens.

Case 2: Suppose $P \notin\{A, B, C\}$.
Claim: Either $P \notin \stackrel{A}{A B}$ or
$P \notin \overleftrightarrow{A C}$, or $P \notin \overleftrightarrow{B C}$.
pf of claim: We just have to rule out the case where $P \in \overleftrightarrow{A B}, P \in \overleftrightarrow{A C}$, and $P \in(\leftrightarrow B C$. Suppose $P \in \overleftrightarrow{A B}$ and $P \in \overleftrightarrow{A C}$ and $P \in \overleftrightarrow{B C}$.
Note that $A, P \in \overleftrightarrow{A B}$.
Also, $A, P \in \overleftrightarrow{A C}$.
But there is a unique line through A and P. Thus, $\overleftrightarrow{A B}=\overleftrightarrow{A C}$.
But then $A, B, C \in \stackrel{\leftrightarrow}{A B}\binom{$ since }{$\stackrel{A B}{A B}}$ which contradicts that A, B, C are non-collinear Claim

By case 1 and case 2, there has to be a line that P is not on.

(9) (Method 2-Direct proof)

Since $(\mathscr{P}, \mathcal{Z})$ is an incidence geometry there exists distinct points A, B, C
that are non-collinear.
case 1: Suppose $P \in\{A, B, C\}$.
Without loss of generality, assume $P=A$.
Let's show that $P \notin \overleftrightarrow{B C}$.
Suppose $P \in \overrightarrow{B C}$;
Then $A=P \in \stackrel{\leftrightarrow}{B C}$.
Then, $A, B, C \in \stackrel{\rightharpoonup}{B C}$ contradizing
 that they are collinens.
Thus we must have $P \notin \stackrel{\leftrightarrow}{B C}$.

$$
\begin{aligned}
& \text { Thus we must have } \notin P C \\
& {\left[\begin{array}{l}
A \text { similar argument shows that } \\
\text { if } P=B \text {, then } P \notin \overleftrightarrow{A C} \text {. And if } \\
P=C \text {, then } P \notin \overleftrightarrow{A B}
\end{array}\right.}
\end{aligned}
$$

Case 2: Suppose $P \notin\{A, B, C\}$.
Claim: Either $P \notin \stackrel{A}{A B}$ or
$P \notin \overleftrightarrow{A C}$, or $P \notin \overleftrightarrow{B C}$.
pf of claim: We just have to rule out the case where $P \in \overleftrightarrow{A B}, P \in \overleftrightarrow{A C}$, and $P \in(\leftrightarrow B C$. Suppose $P \in \overleftrightarrow{A B}$ and $P \in \overleftrightarrow{A C}$ and $P \in \overleftrightarrow{B C}$.
Note that $A, P \in \overleftrightarrow{A B}$.
Also, $A, P \in \overleftrightarrow{A C}$.
But there is a unique line through A and P. Thus, $\overleftrightarrow{A B}=\overleftrightarrow{A C}$.
But then $A, B, C \in \stackrel{\leftrightarrow}{A B}\binom{$ since }{$\stackrel{A B}{A B}}$ which contradicts that A, B, C are non-collinear Claim

By case 1 and case 2, there has to be a line that P is not on.

(10) (Method 1)
proof by contradiction:
Suppose given any two points Q, R we have that P, Q, R are collinear.
Since we have an incidence geometry there must exist distinct points A, B, C that are non-collinear.
case: Suppose $P=A$.
Then, P, B, C are non-collinenr which contradicts our a ssumption.

Case 2: Suppose $P \neq A$.
By assumption, P, A, B are collinear and hence $P, A, B \in \overleftrightarrow{A B}$.
By assumption, P, A, C are collinear and hence $P, A, C \in \overleftrightarrow{A C}$.

Then, $P, A \in \overleftrightarrow{A B}$ and $P, A \in \stackrel{A C}{ }$.
Since there is a unique line through any two distinct points we know $\overleftrightarrow{A B}=\overleftrightarrow{A C}$
But then $A, B, C \in \overrightarrow{A B}$ which contradicts that A, B, C are non-collinear.

Both cases lead to contradictions, so we are done.
(10) (Method 2) Let P be some point from y^{\prime}

By the def of incidence geometry there exist points $A, B, C \in \mathscr{D}$ where A, B, C are non-collinear.
Case 1: Suppose P is equal to one of A, B,or C.
For example, suppose $P=A$. Then set, $Q=B$ and $R=C$. We would have then that P, Q, R are non-collinear.
Same idea works if $P=B$ or $P=C$.
case 2: Suppose $P \neq A, P \neq B$, and $P \neq C$.
(i) If P, B, C are non-collincar $\leftarrow($ set $Q=B, R=C)$ or A, P, C are non-collinear $\leftarrow[\operatorname{set} Q=A, R=C]$ or A, B, P are non-collineas $\leftarrow[\operatorname{set} Q=A, R=B]$ then we are done.
(ii) The only case left is that P, B, C are collinear and A, P, C are collinem, and A, B, P are collinear. We show this can't happen. Suppose it does.
Since P, B, C are collinear and there exists a Unique line through any two points we have that $\overleftrightarrow{P B}=\overleftrightarrow{P C}=\overleftrightarrow{B C}$.

Similarly since A, P, C are collinear We have that $\overrightarrow{A P}=\overleftrightarrow{A C}=\overleftrightarrow{P C}$ (2) A

Thus, $\stackrel{\leftrightarrow C(1)}{=} \stackrel{(2)}{P C}=\stackrel{A C}{=}$
But then $A, B, C \in \stackrel{\leftrightarrow}{B C}=\overleftrightarrow{A C}$ contradicting that A, B, C are non-collinear.
Thus, (ii) can't happen.
Thus, by the above there exist $Q, R \in D$ where P, Q, R are non-collinear.
(II) (a)

Case (i): Is there a line $l=L_{a}$ through $(0,1)$ that is paralell to L_{6} ? The only line L_{a} through $(0,1)$ is L_{0}.
 In this case,

$$
\begin{aligned}
& \text { In this case, } \\
& \begin{aligned}
L_{0} \cap L_{6} & =\{(0, y) \mid y \in \mathbb{R}\} \cap\{(6, y) \mid y \in \mathbb{R}\} \\
& =\phi
\end{aligned}
\end{aligned}
$$

So, L_{0} is paralell to L_{a}
$\operatorname{case}(i i)$ Suppose $l=L_{m, b}$ goes through $(0,1)$.
Then, $l=L_{m, 1}=\{(x, y) \mid y=n x+1\}$.
Can l be paralell to L_{6} ?
No.
This is because the point $(6,6 m+1) \in L_{m, 1} \cap L_{6}$.

So, $L_{m, 1} \cap L_{6} \neq \phi$ and the two lines are not paralell.

Thus by cases (i) and (\ddot{i}) we have that the only line through $P=(0,1)$ that is paralell to L_{6} is L_{0}.
$11(b)$
Let l be a line and P a point not on l. We must find a unique line m such that $P \in m$ and m is puralell to l.

Case 1: Suppose $l=L_{a}$ and $P=(e, f)$ where $p \notin L_{a}$.

Since $P \notin L_{a}$ we know $e \neq a$.

Note that $P \in L_{e}$
And $L_{e} \cap L_{a}=\{(e, y) \mid y \in \mathbb{R}\} \cap\{(a, y) \mid y \in \mathbb{R}\}$

$$
=\phi \quad(\text { since } e \neq a)
$$

So, $P \in L_{e}$ and L_{e} is parallel to L_{a}.
We show L_{e} is the only line with this property.
L_{e} is only vertical line that P lies on. What about a non-vertical line?
Suppose $p \in L_{m, b}=\{(x, y) \mid y=m x+b\}$
Then,

$$
(a, m a+b) \in L_{m, b} \cap L_{a}
$$

 paralell.

Case 2: Suppose $l=L_{m, b}$ and $P=(e, f)$ where $p \notin L_{m, b}$.
Since $P \notin L_{m, b}$ we know $f \neq m e+b$.
Consider the line

$$
L_{m, b^{\prime}}=\left\{(x, y) \mid y=m x+b^{\prime}\right\}
$$

Where $b^{\prime}=f-m e$.

Then, $f=m e+b^{\prime}$ and so

$$
p=(e, f) \in L_{m, b^{\prime}}
$$

Since $b \neq f$-me and $b^{\prime}=f$-me we have that $b \neq b^{\prime}$.

Thus, $L_{m, b} \cap L_{m, b^{\prime}}=\phi$ because if

$$
(x, y) \in L_{m, b} \cap L_{m, b^{\prime}}
$$

then $m x+b=y=m x+b^{\prime}$, but $b \neq b^{\prime}$.

$$
(x, y) \in L_{m, b}
$$

So, $L_{m, b}$ and $L_{m, b^{\prime}}$ are paralell.

Thus, $p \in L_{m, b}$, we $L_{m, b}$ is paralell to $L_{m, b}$. Can there be any other such lines?
Any vertical line L_{a} must intusect $L_{m, b}$ because $(a, m a+b) \in L_{a} \cap L_{m, b}$.
What about a non-verticul line?
Suppose $p \in L_{n, q} \neq L_{m, b^{\prime}}$.
points that

$$
\begin{aligned}
& \text { point } \\
& \text { Solve } y=n x+q
\end{aligned}
$$

Then, since $p=(e, f) \in L_{n, q}$
we have $f=n e+q$.

If $n=m$, then since $L_{n, q} \neq L_{m, b}$,
we must have $q \neq b^{\prime}$.
But then $q=f-n e=f-m e=b^{\prime}$.
But that gives both $\left\{m=n<q \neq b^{\prime}\right.$ and $q=b^{\prime}$.
So we can't have $n=m$.
If $n \neq m$, then by solving $n x+q=y=m x+b$ we get $x=\frac{b-q}{n-m}$. $\leftarrow \begin{aligned} & \text { defined since } \\ & n \neq m \\ & \text { so } n-m \neq 0\end{aligned}$

We then have $(\hat{x}, \hat{y})=\left(\frac{b-q}{n-m}, n\left(\frac{b-q}{n-m}\right)+q\right)$ lies un both $L_{n, q}$ and $L_{m, b^{\prime}}$.
This shows $L_{n, q}$ and $L_{m, b}$ ' are not parallel.
Why does (\hat{x}, \hat{y}) lie un both lines? plug it in!

$$
\begin{aligned}
& \text { We have } \\
& \hat{y}-(n \hat{x}+q)=n\left(\frac{b-q}{n-m}\right)+q-\left(n\left(\frac{b-q}{n-m}\right)+q\right)=0
\end{aligned}
$$

We have

So, $\hat{y}=n \hat{x}+q$.
So, $(\hat{x}, \hat{y}) \in L_{n, q}$.

$$
\begin{aligned}
& \text { Also, } \\
& \begin{aligned}
\hat{y}-(m \hat{x}+b) & =n\left(\frac{b-q}{n-m}\right)+q-\left(m\left(\frac{b-q}{n-m}\right)+b\right) \\
& =\frac{n(b-q)-m(b-q)}{n-m}+q-b \\
& =\frac{(n-m)(b-q)}{n-m}+(q-b) \\
& =(b-q)+(q-b)=0
\end{aligned}
\end{aligned}
$$

So, $(\hat{x}, \hat{y}) \in L_{m, b}$.
Thus, $L_{n, q} \cap L_{m, b} \neq \phi$ and they men't parallel.
Therefore, the only line through P that is paralell to $L_{m, b}$ is $L_{m, b^{\prime}}$.

(12) (a)

Let $P=(0,1)$.
Note that $P \in_{0} L$
 and ${ }_{0} L \cap_{6} L=\phi$.
So, $P \in{ }_{0} L$ and L is pmalell to ${ }_{6} L$.
Note that ${ }_{0} L$ is the only vertical line that p lives on.
Can we find and c_{r} lines that P lives on that are panalell to ${ }_{6} L$?
Suppose $P=(0,1)$ satisfies $(x-c)^{2}+y^{2}=r^{2}$.
Then, $(0-c)^{2}+1^{2}=r^{2}$.
So, $c^{2}+1^{2}=r^{2}$.
Let's consider
$c>0$ to stent.

We need $c<6$ and $c+r \leqslant 6$
So that $L_{r} \cap_{6} L=\phi$
For example, pick any c with

$$
0<c<1 .
$$

Then for such c, set $r=\sqrt{c^{2}+1^{2}}$
Then, $c^{2}+1^{2}=r^{2} \&$ So, $p=(0,1) \in L_{r}$
and $0<c<1<6 \& c<6$
and $c+r=c+\sqrt{1+c^{2}}$

$$
\begin{aligned}
& <1+\sqrt{1+1^{2}} \\
& =1+\sqrt{3} \\
& \approx 2.73 \leqslant 6
\end{aligned}
$$

So, if $0<c<1$ and $r=\sqrt{c^{2}+1}$, then $P \in L_{r}$ and $L_{r} \cap_{6} L=\phi$. to 6^{L}

Since there are an infinite number of c with $0<c<1$ we get an infinite number of lines that P lies on that are puralel to ${ }_{6} L$.
$12(b)$ Problem $12(a)$ shows that the following statement is not true by using $P=(0,1)$ and $l={ }_{6} L$.
"Consider the hyperbolic plane $\mathscr{H}=\left(H \|, \mathcal{L}_{H}\right)$.) Let l be a line in \mathcal{L}_{H} and $p \in H I$. Then there exists a unique line m Where $P \in m$ and m is purcell to l ".
(13) Let $P=\left(x_{1}, y_{1}\right)$ and $Q=\left(x_{2}, y_{2}\right)$ where $x_{1} \neq x_{2}$.
Let $c=\frac{y_{2}^{2}-y_{1}^{2}+x_{2}^{2}-x_{1}^{2}}{2\left(x_{2}-x_{1}\right)}$ and $r=\sqrt{\left(x_{1}-c\right)^{2}+y_{1}^{2}}$

We will show that P and Q both lie on c_{r}.

Since $r=\sqrt{\left(x_{1}-c\right)^{2}+y_{1}^{2}}$ we know that $\left(x_{1}-c\right)^{2}+y_{1}^{2}=r^{2}$ and thus $P=\left(x_{1}, y_{1}\right)$ lies on L_{r}.

Expanding out $\left(x_{1}-c\right)^{2}+y_{1}^{2}=r^{2}$ we get $x_{1}^{2}-2 x_{1} c+c^{2}+y_{1}^{2}=r^{2}$ which becomes $x_{1}^{2}-2 x_{1} c+y_{1}^{2}=r^{2}-c^{2}$

Since $c=\frac{y_{2}^{2}-y_{1}^{2}+x_{2}^{2}-x_{1}^{2}}{2\left(x_{2}-x_{1}\right)}$
we know

$$
\begin{aligned}
& \text { know } \\
& 2 x_{2} c-2 x_{1} c=y_{2}^{2}-y_{1}^{2}+x_{2}^{2}-x_{1}^{2}
\end{aligned}
$$

And so,

$$
\begin{equation*}
x_{1}^{2}-2 x_{1} c+y_{1}^{2}=x_{2}^{2}-2 x_{2} c+y_{2}^{2} \tag{**}
\end{equation*}
$$

Now sub $(*)$ into $(* *)$ to get

$$
r^{2}-c^{2}=x_{2}^{2}-2 x_{2} c+y_{2}^{2}
$$

This gives

$$
\begin{aligned}
& \text { is gives } \\
& x_{2}^{2}-2 x_{2} c+c^{2}+y_{2}^{2}=r^{2}
\end{aligned}
$$

So,

$$
\left(x_{2}-c\right)^{2}+y_{2}^{2}=r^{2}
$$

Thus, $Q=\left(x_{2}, y_{2}\right)$ also lies on chr.
(14) We must prove that $\mathcal{H}=\left(H \|, \mathcal{L}_{H}\right)$ is an incidence geometry.
We showed in class that of is an abstract geometry.
So we must now show properties (i) and (\ddot{i}) of the incidence geometry definition.
(i) Let $P=\left(x_{1}, y_{1}\right)$ and $Q=\left(x_{2}, y_{2}\right)$ be distinct points from $H-1 l$.
We know from class that there exists a line l where P and Q lie on l. We must show that l is unique.
Suppose there exist two lines l and m that P and Q both lie on.
We will show that in all cases we have $l=m$ and this will show there must be a unique line through P and Q.

Case 1: Suppose l and m are both vertical lines. That is suppose $l={ }_{a} L$ and $m={ }_{b} L$.
Since $P=\left(x_{1}, y_{1}\right)$ and $Q=\left(x_{2}, y_{2}\right)$ both lie on $a L$ we know that $x_{1}=a=x_{2}$.
Since P and Q both lie on L we know that $x_{1}=b=x_{2}$.
Thus, $a=b$.
So, $l={ }_{a} L=L=m$.
case 2: Suppose ℓ is a vertical line and m is a non-vectical line.
Then, $l={ }_{a} L$ and $m={ }_{c} L_{r}$.
Remember, we are assuming that

$$
P=\left(x_{1}, y_{1}\right) \text { and } Q=\left(x_{2}, y_{2}\right)
$$

both lie on l and on m.
Since P, Q both lie on $l=L$ we know

$$
p=\left(x_{1}, y_{1}\right)=\left(a, y_{1}\right)
$$

and $Q=\left(x_{2}, y_{2}\right)=\left(a, y_{2}\right)$

Since P and Q both

$$
\text { ce } P \text { and } Q \text { both } \begin{gathered}
(x-c)^{2}+y^{2}=r^{2} \\
y>0
\end{gathered}
$$

$$
y>0
$$

we know that

$$
(a-c)^{2}+y_{1}^{2}=r^{2}
$$

and $(a-c)^{2}+y_{2}^{2}=r^{2} \leftrightarrow Q \in L_{r}$
Subtracting gives $y_{1}^{2}-y_{2}^{2}=0$.
So, $\left(y_{1}+y_{2}\right)\left(y_{1}-y_{2}\right)=0$
Thus either $y_{1}+y_{2}=0$ or $y_{1}-y_{2}=0$

Suppose $y_{1}+y_{2}=0$. $y_{2}>0$ since $Q \in H W$
Then, $y_{1}=-y_{2}<0$.
But $y_{1}>0$. since $p \in \mathbb{H H}$
We can't have both $y_{1}<0$ and $y_{1}>0$.
Thus, we can't have $y_{1}+y_{2}=0$
Suppose $y_{1}-y_{2}=0$
Then $y_{1}=y_{2}$.
But then $P=\left(a, y_{1}\right)=\left(a, y_{2}\right)=Q$.
But P and Q were distinct.
Thus, we can't have $y_{1}-y_{2}=0$.
Both $y_{1}+y_{2}=0$ and $y_{1}-y_{2}=0$ cant happen
So we now know that case 2 Where l is vertical and m is non-vertical cant happen and we are done with this case.
case 3: $l={ }_{c_{1}} L_{r_{1}}$ and $m={ }_{c_{2}} L r_{2}$ are both non-vectical.
Since P and Q both lie on $c_{1} L_{r}$, we get:

$$
\begin{align*}
& \left(x_{1}-c_{1}\right)^{2}+y_{1}^{2}=r_{1}^{2} \tag{1}\\
& \left(x_{2}-c_{1}\right)^{2}+y_{2}^{2}=r_{1}^{2} \tag{2}
\end{align*}
$$

If $x_{1}=x_{2}$ then this leads to $y_{1}^{2}-y_{2}^{2}=0$ by subtracting and using the same method as case 2 we would then get $y_{1}=y_{2}$ and P and Q would not be distinct.
So we can assume $x_{1} \neq x_{2}$.
The above becomes

$$
\begin{align*}
& \text { above becomes } \tag{1}\\
& x_{1}^{2}-2 c_{1} x_{1}+c_{1}^{2}+y_{1}^{2}=r_{1}^{2} \tag{2}\\
& x_{2}^{2}-2 c_{1} x_{2}+c_{1}^{2}+y_{2}^{2}=r_{1}^{2}
\end{align*}
$$

Then (1) - (2) gives

$$
\begin{aligned}
& \text { (1) - (2) gives } \\
& x_{1}^{2}-x_{2}^{2}-2 c_{1}\left(x_{1}-x_{2}\right)+y_{1}^{2}-y_{2}^{2}=0
\end{aligned}
$$

Then,

$$
c_{1}=\frac{-y_{1}^{2}+y_{2}^{2}-x_{1}^{2}+x_{2}^{2}}{-2\left(x_{1}-x_{2}\right)}
$$

And

$$
r_{1}=\sqrt{\left(x_{1}-c_{1}\right)^{2}+y_{1}^{2}}
$$

Since P and Q both lie on $c_{2} r_{r_{2}}$ we can do the same thing as above to

$$
\begin{aligned}
& \left(x_{1}-c_{1}\right)^{2}+y_{1}^{2}=r_{1}^{2} \\
& \left(x_{2}-c_{1}\right)^{2}+y_{2}^{2}=r_{1}^{2}
\end{aligned}
$$

to get that

$$
c_{2}=\frac{-y_{1}^{2}+y_{2}^{2}-x_{1}^{2}+x_{2}^{2}}{-2\left(x_{1}-x_{2}\right)} \leftrightarrows \text { same as }
$$

and

$$
r_{2}=\sqrt{\left(x_{1}-c_{2}\right)^{2}+y_{1}^{2}}
$$

this is the same as r_{1} since $c_{1}=c_{2}$

Thus, $l=L_{c_{1}} r_{r_{1}}=L_{c_{2}}=m$.

